首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5227篇
  免费   346篇
  国内免费   295篇
测绘学   898篇
大气科学   384篇
地球物理   320篇
地质学   616篇
海洋学   137篇
天文学   3篇
综合类   482篇
自然地理   3028篇
  2024年   18篇
  2023年   38篇
  2022年   275篇
  2021年   277篇
  2020年   294篇
  2019年   290篇
  2018年   216篇
  2017年   289篇
  2016年   268篇
  2015年   259篇
  2014年   244篇
  2013年   485篇
  2012年   266篇
  2011年   324篇
  2010年   199篇
  2009年   245篇
  2008年   272篇
  2007年   286篇
  2006年   221篇
  2005年   192篇
  2004年   174篇
  2003年   146篇
  2002年   115篇
  2001年   82篇
  2000年   85篇
  1999年   59篇
  1998年   40篇
  1997年   41篇
  1996年   29篇
  1995年   20篇
  1994年   18篇
  1993年   22篇
  1992年   7篇
  1991年   10篇
  1990年   6篇
  1989年   3篇
  1988年   11篇
  1987年   12篇
  1986年   8篇
  1985年   6篇
  1984年   7篇
  1983年   5篇
  1982年   3篇
  1981年   1篇
排序方式: 共有5868条查询结果,搜索用时 15 毫秒
31.
ABSTRACT

‘Urban re-generations' is written as an afterword to the special issue of Australian Geographer on ‘The Politics of Urban Greening in Australian Cities'. The collection prompts a deep questioning of reparative and regenerative work associated with greening, green spaces and green infrastructures. The climate-driven 2019-2020 bushfire crisis and COVID-19 have amplified the visibility of the more-than-human connectivity of our cities and the deep underlying structures of social and environmental inequity underpinning a variety of urban green spaces and agendas. Inspired by the articles in this special issue, the afterword explores how we might call back the grammars and practices of regeneration from their service to the neo-liberal, settler-colonial city and instead nurture reparative de-colonial practices that aid in the collaborative work of re-composing, becoming into better relation with, and working in modes of situated historical and cultural difference, with green and just cities.  相似文献   
32.
基于变化轨迹分析方法的生态用地流失空间关联研究   总被引:3,自引:0,他引:3  
针对现有研究割裂了生态用地流失这一基本变化过程的不足,本文基于变化轨迹分析方法,从过程完整性角度探求了京津冀城市群地区生态用地流失的空间关联特征。结果表明:① 京津冀城市群地区土地利用变化主要表现为林地、草地、水域和耕地的流失,流失面积的40%转为人工表面;② 林地、草地和水域流失的空间自相关性随空间尺度增大而增强,7 km×7 km空间尺度上3种生态用地流失空间正相关性较强,且随距离阈值增加而降低;③ 距离阈值为10 km时,林地、草地流失高发区集中分布在京津冀西北部地区,水域流失高发区集中分布在东部渤海湾附近,生态环境保护应从京津冀协同发展角度,打破区域发展不均衡,促进京津冀城市群全面发展。  相似文献   
33.
An in-depth analysis of the urban road network structure plays an essential role in understanding the distribution of urban functional area. To concentrate topologically densely connected road segments, communities of urban roads provide a new perspective to study the structure of the network. In this study, based on OpenStreetMap (OSM) roads and points-of-interest (POI) data, we employ the Infomap community detection algorithm to identify the hierarchical community in city roads and explore the shaping role roads play in urban space and their relation with the distribution of urban functional areas. The results demonstrate that the distribution of communities at different levels in Guangzhou, China reflects the urban spatial relation between the suburbs and urban centers and within urban centers. Moreover, the study explored the functional area characteristics at the community scale and identified the distribution of various functional areas. Owing to the structure information contained in the identification process, the detected community can be used as a basic unit in other urban studies. In general, with the community-based network, this study proposes a novel method of combining city roads with urban space and functional zones, providing necessary data support and academic guidance for government and urban planners.  相似文献   
34.
Although the effectiveness of best management practices (BMPs) in reducing urban flooding is widely recognized, the improved sustainability achieved by implementing BMPs in upstream suburban areas, reducing downstream urban floods, is still debated. This study introduces a new definition of urban drainage system (UDS) sustainability, focusing on BMP usage to enhance system performance after adaptation to climate change. Three types of hydraulic reliability index (HRI) plus robustness and improvability indices were used to quantify the potential enhanced sustainability of the system in a changing climate, together with a climate change adaptability index (CCAI). The sustainability of UDS for the safe conveyance of storm-water runoff was investigated under different land-use scenarios: No BMP, BMP in urban areas, and BMP inside and upstream of urban areas, considering climate change impacts. Rainfall–runoff simulation alongside drainage network modelling was conducted using a storm-water management model (US EPA SWMM) to determine the inundation areas for both base-line and future climatic conditions. A new method for disaggregating daily rainfall to hourly, proposed to provide a finer resolution of input rainfall to SWMM, was applied to a semi-urbanized catchment whose upstream runoff from mountainous areas may contribute to the storm-water runoff in downstream urban parts. Our findings confirm an increase in the number of inundation points and reduction in sustainability indices of UDS due to climate change. The results present an increase in UDS reliability from 4% to 16% and improvements in other sustainability indicators using BMPs in upstream suburban areas compared to implementing them in urban areas.  相似文献   
35.
For efficient and targeted management, this study demonstrates a recently developed non-point source (NPS) pollution model for a year-long estimation in the Pingqiao River Basin (22.3 km2) in China. This simple but physically reasonable model estimates NPS export in terms of land use by reflecting spatial hydrological features and source runoff measurements under different land-use types. The NPS export was separately analysed by a distributed hydrological model, a spatial hydrograph-separation technique, and an empirical water quality sub-model. Simulation results suggest that 57 890 kg of total nitrogen (TN) and 1148 kg of total phosphorus (TP) were delivered. The results, validated with observed stream concentrations, show relative errors of 23.3% for TN and 47.4% for TP. Countermeasures for urban areas (5.3% of total area) were prioritized because of the high contribution rate to TN (14.1%) and TP (26.2%) which is caused by the high degree of runoff (8.5%) and pollution source.  相似文献   
36.
Uncontrolled overland flow drives flooding, erosion, and contaminant transport, with the severity of these outcomes often amplified in urban areas. In pervious media such as urban soils, overland flow is initiated via either infiltration‐excess (where precipitation rate exceeds infiltration capacity) or saturation‐excess (when precipitation volume exceeds soil profile storage) mechanisms. These processes call for different management strategies, making it important for municipalities to discern between them. In this study, we derived a generalized one‐dimensional model that distinguishes between infiltration‐excess overland flow (IEOF) and saturation‐excess overland flow (SEOF) using Green–Ampt infiltration concepts. Next, we applied this model to estimate overland flow generation from pervious areas in 11 U.S. cities. We used rainfall forcing that represented low‐ and high‐intensity events and compared responses among measured urban versus predevelopment reference soil hydraulic properties. The derivation showed that the propensity for IEOF versus SEOF is related to the equivalence between two nondimensional ratios: (a) precipitation rate to depth‐weighted hydraulic conductivity and (b) depth of soil profile restrictive layer to soil capillary potential. Across all cities, reference soil profiles were associated with greater IEOF for the high‐intensity set of storms, and urbanized soil profiles tended towards production of SEOF during the lower intensity set of storms. Urban soils produced more cumulative overland flow as a fraction of cumulative precipitation than did reference soils, particularly under conditions associated with SEOF. These results will assist cities in identifying the type and extent of interventions needed to manage storm water produced from pervious areas.  相似文献   
37.
城市湖泊富营养化问题日趋严峻,以往对水华的研究多集中于大型自然淡水湖库,而对小型城市浅水湖泊的水华动态相对较少.以宁波月湖为研究对象,探讨水华暴发期间浮游植物变化特征及与影响因子之间的关系,以期判别影响城市湖泊水华的主控因子.月湖水华期间营养盐水平处于中富营养至极端富营养之间,此次共检出浮游植物8门61属,藻种组成以绿藻门(51.79%)和硅藻门(21.43%)为主,各点位浮游植物生长主要受水温、光照驱动,经历了隐藻门→硅藻门→绿藻门→蓝藻门的演替.水华种为雷氏衣藻(Chlamydomonas reinhardtii),总藻密度最高达到1.55×108 cells/L,水华暴发后各点位衣藻属比例升高(最高达到81.10%),群落结构呈现单一化特征.通过Pearson相关性分析和RDA分析发现衣藻属生长与水温、pH、总磷浓度均呈显著正相关,春季气温回升、天气持续晴好,城市浅水湖泊高营养盐负荷、水体流动性差等特点为带鞭毛的衣藻属提供了适宜的生存条件,在环境条件均适宜的情况下拥有最大生长潜力的衣藻属在营养盐、光照等竞争中生长速率明显优于其他藻种,从而发生绿藻水华.  相似文献   
38.
A wireless water-level monitoring system for an urban drainage flood warning is developed, and stations equipped with pressure sensors are installed to monitor water levels. The water levels for flood warning are investigated. Two stages of warning water level for “larger” conduits are set based on the rate of rising water levels. In a similar way, only one stage of the warning water level is set for “smaller” conduits. The average rates of rising water levels for different scenarios are estimated using the US EPA Storm Water Management Model (SWMM). When evaluating the impact of flooding, the outflows from manholes simulated by the SWMM are used as sources for a two-dimensional overland flow simulation. The integrated system is successfully executed in Jhonghe, New Taipei City, Taiwan, which has experienced urban drainage floods. Therefore, this system can provide urban drainage flood warnings to the authorities to take disaster reduction measures.  相似文献   
39.
基于支持向量机的京津冀城市群热环境时空形态模拟   总被引:1,自引:0,他引:1  
城市群热环境作为区域生态重要组成部分,已成为近年来的研究热点。而如何选择针对城市群这种复杂地地貌特征的热环境量化工具一直是亟待解决的技术难点,基于此本研究提出了一种解决多样本、非线性、非平稳及高维函数拟合的计算方法,并建立了基于支持向量机(SVM)的京津冀城市群热环境曲面模型来揭示城市群热环境的时空形态变化。研究结果表明:① SVM模型在刻画多核心、多种土地利用类型城市群热环境的空间分布方面具有理论与实践可行性,能够根据热环境的整体空间布局通过高斯核函数进行局部优化差值,最大限度减少缺省值对模型拟合结果的影响。相比于对照方法可以模拟出更高精度的复杂地貌特征城市群热岛空间分布格局;② 在SVM模型曲面拟合的过程中,拟合精度和拟合时间是衡量拟合结果的重要指标,而原始影像的分辨率则是影响该指标的决定性因素;③ 2003-2013年区域内北京市与天津市的城市热岛效应变化最为明显,热岛面积分别增加7091 km2与4196 km2,空间上呈现出逐年接近连片发展趋势,热岛重心移动轨迹具有明显的时空分异性。北京城市热岛特征为东南部地区异速增长,西部地区缓慢增长;天津城市热岛特征为以城市中心为圆心向周围扩展。本研究进一步丰富了城市群热环境评测的定量方法,可以在实践上对城市群的城市规划、城市建设、环境保护和区域可持续发展等提供定量化、可视化的决策支持。  相似文献   
40.
Decades of research has concluded that the percent of impervious surface cover in a watershed is strongly linked to negative impacts on urban stream health. Recently, there has been a push by municipalities to offset these effects by installing structural stormwater control measures (SCMs), which are landscape features designed to retain and reduce runoff to mitigate the effects of urbanisation on event hydrology. The goal of this study is to build generalisable relationships between the level of SCM implementation in urban watersheds and resulting changes to hydrology. A literature review of 185 peer-reviewed studies of watershed-scale SCM implementation across the globe was used to identify 52 modelling studies suitable for a meta-analysis to build statistical relationships between SCM implementation and hydrologic change. Hydrologic change is quantified as the percent reduction in storm event runoff volume and peak flow between a watershed with SCMs relative to a (near) identical control watershed without SCMs. Results show that for each additional 1% of SCM-mitigated impervious area in a watershed, there is an additional 0.43% reduction in runoff and a 0.60% reduction in peak flow. Values of SCM implementation required to produce a change in water quantity metrics were identified at varying levels of probability. For example, there is a 90% probability (high confidence) of at least a 1% reduction in peak flow with mitigation of 33% of impervious surfaces. However, as the reduction target increases or mitigated impervious surface decreases, the probability of reaching the reduction target also decreases. These relationships can be used by managers to plan SCM implementation at the watershed scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号